Half Life

When examining half-life, the important thing to remember is that half-life represents the amount of time for half of the substance to disappear.

You will often use the Law of Uninhibited Growth and Decay when doing half-life problems:

$$A(t) = A_0 e^{kt}$$

Examples

1) Iodine 131 is a radioactive material that decays according to the function $A(t) = A_0 e^{-0.087t}$ where A_0 is the initial amount present and A is the amount present at time t (in days). What is the half-life of Iodine 131?

2) The half-life of radium is 1690 years. If 10 grams is present now, how much will be present in 50 years?

EVEN MORE Applications of Exponential and Logarithmic Functions

Newton's Law of Cooling

The temperature, u, of a heated object at a given time, t, can be modeled by the following function:

$$u(t) = T + (u_0 - T)e^{kt}$$
, $k < 0$

where T is the constant temperature of the surrounding medium, \mathbf{u}_0 is the initial temperature of the heated object, and k is a negative constant.

Example

An object is heated to 100 degrees Celsius and is then allowed to cool in a room whose air temperature is 30 degrees Celsius.

a) If the temperature of the object is 80°C after 5 minutes, when will the temperature be 50°C ?

b) Determine the elapsed time before the temperature of the object is 35°C.

c) What do you notice about u(t), the temperature, as time passes?

EVEN MORE Applications of Exponential and Logarithmic Functions

Logistic Growth Model

This is exponential growth, but with inhibitions...in other words, certain factors will *limit* the growth:

$$P(t) = \frac{c}{1 + ae^{-bt}}, b > 0 \& c > 0$$

where a, b, and c are constants. c is called the *carrying capacity* because it is the ceiling for how big this value can become.

Example

Fruit flies are placed in a half-pint milk bottle with a banana and yeast plants. Suppose that the fruit fly population after t days is given by $P(t) = \frac{230}{1 + 56.5e^{-0.37t}}$.

- a) What is the carrying capacity of the half-pint bottle?
- b) How many fruit flies were initially placed in the half-pint bottle?

c) When will the population of fruit flies be 180?